Paper Reading AI Learner

Actionable Guidance for High-Consequence AI Risk Management: Towards Standards Addressing AI Catastrophic Risks

2022-06-17 18:40:41
Anthony M. Barrett (1), Dan Hendrycks (1), Jessica Newman (1), Brandie Nonnecke (1) ((1) UC Berkeley)

Abstract

Artificial intelligence (AI) systems can provide many beneficial capabilities but also risks of adverse events. Some AI systems could present risks of events with very high or catastrophic consequences at societal scale. The US National Institute of Standards and Technology (NIST) is developing the NIST Artificial Intelligence Risk Management Framework (AI RMF) as voluntary guidance on AI risk assessment and management for AI developers and others. For addressing risks of events with catastrophic consequences, NIST indicated a need to translate from high level principles to actionable risk management guidance. In this document, we provide detailed actionable-guidance recommendations focused on identifying and managing risks of events with very high or catastrophic consequences, intended as a risk management practices resource for NIST for AI RMF version 1.0 (scheduled for release in early 2023), or for AI RMF users, or for other AI risk management guidance and standards as appropriate. We also provide our methodology for our recommendations. We provide actionable-guidance recommendations for AI RMF 1.0 on: identifying risks from potential unintended uses and misuses of AI systems; including catastrophic-risk factors within the scope of risk assessments and impact assessments; identifying and mitigating human rights harms; and reporting information on AI risk factors including catastrophic-risk factors. In addition, we provide recommendations on additional issues for a roadmap for later versions of the AI RMF or supplementary publications. These include: providing an AI RMF Profile with supplementary guidance for cutting-edge increasingly multi-purpose or general-purpose AI. We aim for this work to be a concrete risk-management practices contribution, and to stimulate constructive dialogue on how to address catastrophic risks and associated issues in AI standards.

Abstract (translated)

URL

https://arxiv.org/abs/2206.08966

PDF

https://arxiv.org/pdf/2206.08966.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot