Paper Reading AI Learner

Contrastive Learning of Features between Images and LiDAR

2022-06-24 04:35:23
Peng Jiang, Srikanth Saripalli

Abstract

Image and Point Clouds provide different information for robots. Finding the correspondences between data from different sensors is crucial for various tasks such as localization, mapping, and navigation. Learning-based descriptors have been developed for single sensors; there is little work on cross-modal features. This work treats learning cross-modal features as a dense contrastive learning problem. We propose a Tuple-Circle loss function for cross-modality feature learning. Furthermore, to learn good features and not lose generality, we developed a variant of widely used PointNet++ architecture for point cloud and U-Net CNN architecture for images. Moreover, we conduct experiments on a real-world dataset to show the effectiveness of our loss function and network structure. We show that our models indeed learn information from both images as well as LiDAR by visualizing the features.

Abstract (translated)

URL

https://arxiv.org/abs/2206.12071

PDF

https://arxiv.org/pdf/2206.12071.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot