Paper Reading AI Learner

Detection of Doctored Speech: Towards an End-to-End Parametric Learn-able Filter Approach

2022-06-27 06:28:46
Rohit Arora

Abstract

The Automatic Speaker Verification systems have potential in biometrics applications for logical control access and authentication. A lot of things happen to be at stake if the ASV system is compromised. The preliminary work presents a comparative analysis of the wavelet and MFCC-based state-of-the-art spoof detection techniques developed in these papers, respectively (Novoselov et al., 2016) (Alam et al., 2016a). The results on ASVspoof 2015 justify our inclination towards wavelet-based features instead of MFCC features. The experiments on the ASVspoof 2019 database show the lack of credibility of the traditional handcrafted features and give us more reason to progress towards using end-to-end deep neural networks and more recent techniques. We use Sincnet architecture as our baseline. We get E2E deep learning models, which we call WSTnet and CWTnet, respectively, by replacing the Sinc layer with the Wavelet Scattering and Continuous wavelet transform layers. The fusion model achieved 62% and 17% relative improvement over traditional handcrafted models and our Sincnet baseline when evaluated on the modern spoofing attacks in ASVspoof 2019. The final scale distribution and the number of scales used in CWTnet are far from optimal for the task at hand. So to solve this problem, we replaced the CWT layer with a Wavelet Deconvolution(WD) (Khan and Yener, 2018) layer in our CWTnet architecture. This layer calculates the Discrete-Continuous Wavelet Transform similar to the CWTnet but also optimizes the scale parameter using back-propagation. The WDnet model achieved 26% and 7% relative improvement over CWTnet and Sincnet models respectively when evaluated over ASVspoof 2019 dataset. This shows that more generalized features are extracted as compared to the features extracted by CWTnet as only the most important and relevant frequency regions are focused upon.

Abstract (translated)

URL

https://arxiv.org/abs/2206.13066

PDF

https://arxiv.org/pdf/2206.13066.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot