Paper Reading AI Learner

Multi-Fault Diagnosis Of Industrial Rotating Machines Using Data-Driven Approach: A Review Of Two Decades Of Research

2022-05-30 14:54:27
Shreyas Gawde, Shruti Patil, Satish Kumar, Pooja Kamat, Ketan Kotecha, Ajith Abraham

Abstract

Industry 4.0 is an era of smart manufacturing. Manufacturing is impossible without the use of machinery. Majority of these machines comprise rotating components and are called rotating machines. The engineers' top priority is to maintain these critical machines to reduce the unplanned shutdown and increase the useful life of machinery. Predictive maintenance (PDM) is the current trend of smart maintenance. The challenging task in PDM is to diagnose the type of fault. With Artificial Intelligence (AI) advancement, data-driven approach for predictive maintenance is taking a new flight towards smart manufacturing. Several researchers have published work related to fault diagnosis in rotating machines, mainly exploring a single type of fault. However, a consolidated review of literature that focuses more on multi-fault diagnosis of rotating machines is lacking. There is a need to systematically cover all the aspects right from sensor selection, data acquisition, feature extraction, multi-sensor data fusion to the systematic review of AI techniques employed in multi-fault diagnosis. In this regard, this paper attempts to achieve the same by implementing a systematic literature review on a Data-driven approach for multi-fault diagnosis of Industrial Rotating Machines using Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) method. The PRISMA method is a collection of guidelines for the composition and structure of systematic reviews and other meta-analyses. This paper identifies the foundational work done in the field and gives a comparative study of different aspects related to multi-fault diagnosis of industrial rotating machines. The paper also identifies the major challenges, research gap. It gives solutions using recent advancements in AI in implementing multi-fault diagnosis, giving a strong base for future research in this field.

Abstract (translated)

URL

https://arxiv.org/abs/2206.14153

PDF

https://arxiv.org/pdf/2206.14153.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot