Paper Reading AI Learner

You Only Need One Detector: Unified Object Detector for Different Modalities based on Vision Transformers

2022-07-03 16:01:04
Xiaoke Shen, Zhujun Li, Jaime Canizales, Ioannis Stamos

Abstract

Most systems use different models for different modalities, such as one model for processing RGB images and one for depth images. Meanwhile, some recent works discovered that an identical model for one modality can be used for another modality with the help of cross modality transfer learning. In this article, we further find out that by using a vision transformer together with cross/inter modality transfer learning, a unified detector can achieve better performances when using different modalities as inputs. The unified model is useful as we don't need to maintain separate models or weights for robotics, hence, it is more efficient. One application scenario of our unified system for robotics can be: without any model architecture and model weights updating, robotics can switch smoothly on using RGB camera or both RGB and Depth Sensor during the day time and Depth sensor during the night time . Experiments on SUN RGB-D dataset show: Our unified model is not only efficient, but also has a similar or better performance in terms of mAP50 based on SUNRGBD16 category: compare with the RGB only one, ours is slightly worse (52.3 $\to$ 51.9). compare with the point cloud only one, we have similar performance (52.7 $\to$ 52.8); When using the novel inter modality mixing method proposed in this work, our model can achieve a significantly better performance with 3.1 (52.7 $\to$ 55.8) absolute improvement comparing with the previous best result. Code (including training/inference logs and model checkpoints) is available: \url{this https URL}

Abstract (translated)

URL

https://arxiv.org/abs/2207.01071

PDF

https://arxiv.org/pdf/2207.01071.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot