Paper Reading AI Learner

Training Patch Analysis and Mining Skills for Image Restoration Deep Neural Networks

2022-07-03 16:37:57
Jae Woong Soh, Nam Ik Cho

Abstract

There have been numerous image restoration methods based on deep convolutional neural networks (CNNs). However, most of the literature on this topic focused on the network architecture and loss functions, while less detailed on the training methods. Hence, some of the works are not easily reproducible because it is required to know the hidden training skills to obtain the same results. To be specific with the training dataset, few works discussed how to prepare and order the training image patches. Moreover, it requires a high cost to capture new datasets to train a restoration network for the real-world scene. Hence, we believe it is necessary to study the preparation and selection of training data. In this regard, we present an analysis of the training patches and explore the consequences of different patch extraction methods. Eventually, we propose a guideline for the patch extraction from given training images.

Abstract (translated)

URL

https://arxiv.org/abs/2207.01075

PDF

https://arxiv.org/pdf/2207.01075.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot