Paper Reading AI Learner

BiTAT: Neural Network Binarization with Task-dependent Aggregated Transformation

2022-07-04 13:25:49
Geon Park, Jaehong Yoon, Haiyang Zhang, Xing Zhang, Sung Ju Hwang, Yonina C. Eldar

Abstract

Neural network quantization aims to transform high-precision weights and activations of a given neural network into low-precision weights/activations for reduced memory usage and computation, while preserving the performance of the original model. However, extreme quantization (1-bit weight/1-bit activations) of compactly-designed backbone architectures (e.g., MobileNets) often used for edge-device deployments results in severe performance degeneration. This paper proposes a novel Quantization-Aware Training (QAT) method that can effectively alleviate performance degeneration even with extreme quantization by focusing on the inter-weight dependencies, between the weights within each layer and across consecutive layers. To minimize the quantization impact of each weight on others, we perform an orthonormal transformation of the weights at each layer by training an input-dependent correlation matrix and importance vector, such that each weight is disentangled from the others. Then, we quantize the weights based on their importance to minimize the loss of the information from the original weights/activations. We further perform progressive layer-wise quantization from the bottom layer to the top, so that quantization at each layer reflects the quantized distributions of weights and activations at previous layers. We validate the effectiveness of our method on various benchmark datasets against strong neural quantization baselines, demonstrating that it alleviates the performance degeneration on ImageNet and successfully preserves the full-precision model performance on CIFAR-100 with compact backbone networks.

Abstract (translated)

URL

https://arxiv.org/abs/2207.01394

PDF

https://arxiv.org/pdf/2207.01394.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot