Paper Reading AI Learner

Classification of Alzheimer's Disease Using the Convolutional Neural Network with Transfer Learning and Weighted Loss

2022-07-04 17:09:27
Muhammad Wildan Oktavian, Novanto Yudistira, Achmad Ridok

Abstract

Alzheimer's disease is a progressive neurodegenerative disorder that gradually deprives the patient of cognitive function and can end in death. With the advancement of technology today, it is possible to detect Alzheimer's disease through Magnetic Resonance Imaging (MRI) scans. So that MRI is the technique most often used for the diagnosis and analysis of the progress of Alzheimer's disease. With this technology, image recognition in the early diagnosis of Alzheimer's disease can be achieved automatically using machine learning. Although machine learning has many advantages, currently the use of deep learning is more widely applied because it has stronger learning capabilities and is more suitable for solving image recognition problems. However, there are still several challenges that must be faced to implement deep learning, such as the need for large datasets, requiring large computing resources, and requiring careful parameter setting to prevent overfitting or underfitting. In responding to the challenge of classifying Alzheimer's disease using deep learning, this study propose the Convolutional Neural Network (CNN) method with the Residual Network 18 Layer (ResNet-18) architecture. To overcome the need for a large and balanced dataset, transfer learning from ImageNet is used and weighting the loss function values so that each class has the same weight. And also in this study conducted an experiment by changing the network activation function to a mish activation function to increase accuracy. From the results of the tests that have been carried out, the accuracy of the model is 88.3 % using transfer learning, weighted loss and the mish activation function. This accuracy value increases from the baseline model which only gets an accuracy of 69.1 %.

Abstract (translated)

URL

https://arxiv.org/abs/2207.01584

PDF

https://arxiv.org/pdf/2207.01584.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot