Paper Reading AI Learner

ST-CoNAL: Consistency-Based Acquisition Criterion Using Temporal Self-Ensemble for Active Learning

2022-07-05 17:25:59
Jae Soon Baik, In Young Yoon, Jun Won Choi

Abstract

Modern deep learning has achieved great success in various fields. However, it requires the labeling of huge amounts of data, which is expensive and labor-intensive. Active learning (AL), which identifies the most informative samples to be labeled, is becoming increasingly important to maximize the efficiency of the training process. The existing AL methods mostly use only a single final fixed model for acquiring the samples to be labeled. This strategy may not be good enough in that the structural uncertainty of a model for given training data is not considered to acquire the samples. In this study, we propose a novel acquisition criterion based on temporal self-ensemble generated by conventional stochastic gradient descent (SGD) optimization. These self-ensemble models are obtained by capturing the intermediate network weights obtained through SGD iterations. Our acquisition function relies on a consistency measure between the student and teacher models. The student models are given a fixed number of temporal self-ensemble models, and the teacher model is constructed by averaging the weights of the student models. Using the proposed acquisition criterion, we present an AL algorithm, namely student-teacher consistency-based AL (ST-CoNAL). Experiments conducted for image classification tasks on CIFAR-10, CIFAR-100, Caltech-256, and Tiny ImageNet datasets demonstrate that the proposed ST-CoNAL achieves significantly better performance than the existing acquisition methods. Furthermore, extensive experiments show the robustness and effectiveness of our methods.

Abstract (translated)

URL

https://arxiv.org/abs/2207.02182

PDF

https://arxiv.org/pdf/2207.02182.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot