Paper Reading AI Learner

Personalizing Federated Medical Image Segmentation via Local Calibration

2022-07-11 06:30:31
Jiacheng Wang, Yueming Jin, Liansheng Wang

Abstract

Medical image segmentation under federated learning (FL) is a promising direction by allowing multiple clinical sites to collaboratively learn a global model without centralizing datasets. However, using a single model to adapt to various data distributions from different sites is extremely challenging. Personalized FL tackles this issue by only utilizing partial model parameters shared from global server, while keeping the rest to adapt to its own data distribution in the local training of each site. However, most existing methods concentrate on the partial parameter splitting, while do not consider the \textit{inter-site in-consistencies} during the local training, which in fact can facilitate the knowledge communication over sites to benefit the model learning for improving the local accuracy. In this paper, we propose a personalized federated framework with \textbf{L}ocal \textbf{C}alibration (LC-Fed), to leverage the inter-site in-consistencies in both \textit{feature- and prediction- levels} to boost the segmentation. Concretely, as each local site has its alternative attention on the various features, we first design the contrastive site embedding coupled with channel selection operation to calibrate the encoded features. Moreover, we propose to exploit the knowledge of prediction-level in-consistency to guide the personalized modeling on the ambiguous regions, e.g., anatomical boundaries. It is achieved by computing a disagreement-aware map to calibrate the prediction. Effectiveness of our method has been verified on three medical image segmentation tasks with different modalities, where our method consistently shows superior performance to the state-of-the-art personalized FL methods. Code is available at this https URL.

Abstract (translated)

URL

https://arxiv.org/abs/2207.04655

PDF

https://arxiv.org/pdf/2207.04655.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot