Paper Reading AI Learner

FreeREA: Training-Free Evolution-based Architecture Search

2022-06-17 11:16:28
Niccolò Cavagnero, Luca Robbiano, Barbara Caputo, Giuseppe Averta

Abstract

In the last decade, most research in Machine Learning contributed to the improvement of existing models, with the aim of increasing the performance of neural networks for the solution of a variety of different tasks. However, such advancements often come at the cost of an increase of model memory and computational requirements. This represents a significant limitation for the deployability of research output in realistic settings, where the cost, the energy consumption, and the complexity of the framework play a crucial role. To solve this issue, the designer should search for models that maximise the performance while limiting its footprint. Typical approaches to reach this goal rely either on manual procedures, which cannot guarantee the optimality of the final design, or upon Neural Architecture Search algorithms to automatise the process, at the expenses of extremely high computational time. This paper provides a solution for the fast identification of a neural network that maximises the model accuracy while preserving size and computational constraints typical of tiny devices. Our approach, named FreeREA, is a custom cell-based evolution NAS algorithm that exploits an optimised combination of training-free metrics to rank architectures during the search, thus without need of model training. Our experiments, carried out on the common benchmarks NAS-Bench-101 and NATS-Bench, demonstrate that i) FreeREA is the first method able to provide very accurate models in minutes of search time; ii) it outperforms State of the Art training-based and training-free techniques in all the datasets and benchmarks considered, and iii) it can easily generalise to constrained scenarios, representing a competitive solution for fast Neural Architecture Search in generic constrained applications.

Abstract (translated)

URL

https://arxiv.org/abs/2207.05135

PDF

https://arxiv.org/pdf/2207.05135.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot