Paper Reading AI Learner

Explainable Intrusion Detection Systems : A Survey of Current Methods, Challenges, and Opportunities

2022-07-13 14:31:46
Subash Neupane, Jesse Ables, William Anderson, Sudip Mittal, Shahram Rahimi, Ioana Banicescu, Maria Seale

Abstract

The application of Artificial Intelligence (AI) and Machine Learning (ML) to cybersecurity challenges has gained traction in industry and academia, partially as a result of widespread malware attacks on critical systems such as cloud infrastructures and government institutions. Intrusion Detection Systems (IDS), using some forms of AI, have received widespread adoption due to their ability to handle vast amounts of data with a high prediction accuracy. These systems are hosted in the organizational Cyber Security Operation Center (CSoC) as a defense tool to monitor and detect malicious network flow that would otherwise impact the Confidentiality, Integrity, and Availability (CIA). CSoC analysts rely on these systems to make decisions about the detected threats. However, IDSs designed using Deep Learning (DL) techniques are often treated as black box models and do not provide a justification for their predictions. This creates a barrier for CSoC analysts, as they are unable to improve their decisions based on the model's predictions. One solution to this problem is to design explainable IDS (X-IDS). This survey reviews the state-of-the-art in explainable AI (XAI) for IDS, its current challenges, and discusses how these challenges span to the design of an X-IDS. In particular, we discuss black box and white box approaches comprehensively. We also present the tradeoff between these approaches in terms of their performance and ability to produce explanations. Furthermore, we propose a generic architecture that considers human-in-the-loop which can be used as a guideline when designing an X-IDS. Research recommendations are given from three critical viewpoints: the need to define explainability for IDS, the need to create explanations tailored to various stakeholders, and the need to design metrics to evaluate explanations.

Abstract (translated)

URL

https://arxiv.org/abs/2207.06236

PDF

https://arxiv.org/pdf/2207.06236.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot