Paper Reading AI Learner

Deep versus Wide: An Analysis of Student Architectures for Task-Agnostic Knowledge Distillation of Self-Supervised Speech Models

2022-07-14 12:43:36
Takanori Ashihara, Takafumi Moriya, Kohei Matsuura, Tomohiro Tanaka

Abstract

Self-supervised learning (SSL) is seen as a very promising approach with high performance for several speech downstream tasks. Since the parameters of SSL models are generally so large that training and inference require a lot of memory and computational cost, it is desirable to produce compact SSL models without a significant performance degradation by applying compression methods such as knowledge distillation (KD). Although the KD approach is able to shrink the depth and/or width of SSL model structures, there has been little research on how varying the depth and width impacts the internal representation of the small-footprint model. This paper provides an empirical study that addresses the question. We investigate the performance on SUPERB while varying the structure and KD methods so as to keep the number of parameters constant; this allows us to analyze the contribution of the representation introduced by varying the model architecture. Experiments demonstrate that a certain depth is essential for solving content-oriented tasks (e.g. automatic speech recognition) accurately, whereas a certain width is necessary for achieving high performance on several speaker-oriented tasks (e.g. speaker identification). Based on these observations, we identify, for SUPERB, a more compressed model with better performance than previous studies.

Abstract (translated)

URL

https://arxiv.org/abs/2207.06867

PDF

https://arxiv.org/pdf/2207.06867.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot