Paper Reading AI Learner

CausNet : Generational orderings based search for optimal Bayesian networks via dynamic programming with parent set constraints

2022-07-18 03:26:41
Nand Sharma, Joshua Millstein

Abstract

Finding a globally optimal Bayesian Network using exhaustive search is a problem with super-exponential complexity, which severely restricts the number of variables that it can work for. We implement a dynamic programming based algorithm with built-in dimensionality reduction and parent set identification. This reduces the search space drastically and can be applied to large-dimensional data. We use what we call generational orderings based search for optimal networks, which is a novel way to efficiently search the space of possible networks given the possible parent sets. The algorithm supports both continuous and categorical data, and categorical as well as survival outcomes. We demonstrate the efficacy of our algorithm on both synthetic and real data. In simulations, our algorithm performs better than three state-of-art algorithms that are currently used extensively. We then apply it to an Ovarian Cancer gene expression dataset with 513 genes and a survival outcome. Our algorithm is able to find an optimal network describing the disease pathway consisting of 6 genes leading to the outcome node in a few minutes on a basic computer. Our generational orderings based search for optimal networks, is both efficient and highly scalable approach to finding optimal Bayesian Networks, that can be applied to 1000s of variables. Using specifiable parameters - correlation, FDR cutoffs, and in-degree - one can increase or decrease the number of nodes and density of the networks. Availability of two scoring option-BIC and Bge-and implementation of survival outcomes and mixed data types makes our algorithm very suitable for many types of high dimensional biomedical data to find disease pathways.

Abstract (translated)

URL

https://arxiv.org/abs/2207.08365

PDF

https://arxiv.org/pdf/2207.08365.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot