Paper Reading AI Learner

A Semantic-aware Attention and Visual Shielding Network for Cloth-changing Person Re-identification

2022-07-18 05:38:37
Zan Gao, Hongwei Wei, Weili Guan, Jie Nie, Meng Wang, Shenyong Chen

Abstract

Cloth-changing person reidentification (ReID) is a newly emerging research topic that aims to retrieve pedestrians whose clothes are changed. Since the human appearance with different clothes exhibits large variations, it is very difficult for existing approaches to extract discriminative and robust feature representations. Current works mainly focus on body shape or contour sketches, but the human semantic information and the potential consistency of pedestrian features before and after changing clothes are not fully explored or are ignored. To solve these issues, in this work, a novel semantic-aware attention and visual shielding network for cloth-changing person ReID (abbreviated as SAVS) is proposed where the key idea is to shield clues related to the appearance of clothes and only focus on visual semantic information that is not sensitive to view/posture changes. Specifically, a visual semantic encoder is first employed to locate the human body and clothing regions based on human semantic segmentation information. Then, a human semantic attention module (HSA) is proposed to highlight the human semantic information and reweight the visual feature map. In addition, a visual clothes shielding module (VCS) is also designed to extract a more robust feature representation for the cloth-changing task by covering the clothing regions and focusing the model on the visual semantic information unrelated to the clothes. Most importantly, these two modules are jointly explored in an end-to-end unified framework. Extensive experiments demonstrate that the proposed method can significantly outperform state-of-the-art methods, and more robust features can be extracted for cloth-changing persons. Compared with FSAM (published in CVPR 2021), this method can achieve improvements of 32.7% (16.5%) and 14.9% (-) on the LTCC and PRCC datasets in terms of mAP (rank-1), respectively.

Abstract (translated)

URL

https://arxiv.org/abs/2207.08387

PDF

https://arxiv.org/pdf/2207.08387.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot