Paper Reading AI Learner

MonoIndoor++:Towards Better Practice of Self-Supervised Monocular Depth Estimation for Indoor Environments

2022-07-18 21:34:43
Runze Li, Pan Ji, Yi Xu, Bir Bhanu

Abstract

Self-supervised monocular depth estimation has seen significant progress in recent years, especially in outdoor environments. However, depth prediction results are not satisfying in indoor scenes where most of the existing data are captured with hand-held devices. As compared to outdoor environments, estimating depth of monocular videos for indoor environments, using self-supervised methods, results in two additional challenges: (i) the depth range of indoor video sequences varies a lot across different frames, making it difficult for the depth network to induce consistent depth cues for training; (ii) the indoor sequences recorded with handheld devices often contain much more rotational motions, which cause difficulties for the pose network to predict accurate relative camera poses. In this work, we propose a novel framework-MonoIndoor++ by giving special considerations to those challenges and consolidating a set of good practices for improving the performance of self-supervised monocular depth estimation for indoor environments. First, a depth factorization module with transformer-based scale regression network is proposed to estimate a global depth scale factor explicitly, and the predicted scale factor can indicate the maximum depth values. Second, rather than using a single-stage pose estimation strategy as in previous methods, we propose to utilize a residual pose estimation module to estimate relative camera poses across consecutive frames iteratively. Third, to incorporate extensive coordinates guidance for our residual pose estimation module, we propose to perform coordinate convolutional encoding directly over the inputs to pose networks. The proposed method is validated on a variety of benchmark indoor datasets, i.e., EuRoC MAV, NYUv2, ScanNet and 7-Scenes, demonstrating the state-of-the-art performance.

Abstract (translated)

URL

https://arxiv.org/abs/2207.08951

PDF

https://arxiv.org/pdf/2207.08951.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot