Paper Reading AI Learner

Geometric Features Informed Multi-person Human-object Interaction Recognition in Videos

2022-07-19 17:36:55
Tanqiu Qiao, Qianhui Men, Frederick W. B. Li, Yoshiki Kubotani, Shigeo Morishima, Hubert P. H. Shum

Abstract

Human-Object Interaction (HOI) recognition in videos is important for analyzing human activity. Most existing work focusing on visual features usually suffer from occlusion in the real-world scenarios. Such a problem will be further complicated when multiple people and objects are involved in HOIs. Consider that geometric features such as human pose and object position provide meaningful information to understand HOIs, we argue to combine the benefits of both visual and geometric features in HOI recognition, and propose a novel Two-level Geometric feature-informed Graph Convolutional Network (2G-GCN). The geometric-level graph models the interdependency between geometric features of humans and objects, while the fusion-level graph further fuses them with visual features of humans and objects. To demonstrate the novelty and effectiveness of our method in challenging scenarios, we propose a new multi-person HOI dataset (MPHOI-72). Extensive experiments on MPHOI-72 (multi-person HOI), CAD-120 (single-human HOI) and Bimanual Actions (two-hand HOI) datasets demonstrate our superior performance compared to state-of-the-arts.

Abstract (translated)

URL

https://arxiv.org/abs/2207.09425

PDF

https://arxiv.org/pdf/2207.09425.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot