Paper Reading AI Learner

Joint shape learning and segmentation for medical images using a minimalistic deep network

2019-01-25 10:53:57
Balamurali Murugesan, Kaushik Sarveswaran, Sharath M Shankaranarayana, Keerthi Ram, Mohanasankar Sivaprakasam

Abstract

Recently, state-of-the-art results have been achieved in semantic segmentation using fully convolutional networks (FCNs). Most of these networks employ encoder-decoder style architecture similar to U-Net and are trained with images and the corresponding segmentation maps as a pixel-wise classification task. Such frameworks only exploit class information by using the ground truth segmentation maps. In this paper, we propose a multi-task learning framework with the main aim of exploiting structural and spatial information along with the class information. We modify the decoder part of the FCN to exploit class information and the structural information as well. We intend to do this while also keeping the parameters of the network as low as possible. We obtain the structural information using either of the two ways: i) using the contour map and ii) using the distance map, both of which can be obtained from ground truth segmentation maps with no additional annotation costs. We also explore different ways in which distance maps can be computed and study the effects of different distance maps on the segmentation performance. We also experiment extensively on two different medical image segmentation applications: i.e i) using color fundus images for optic disc and cup segmentation and ii) using endoscopic images for polyp segmentation. Through our experiments, we report results comparable to, and in some cases performing better than the current state-of-the-art architectures and with an order of 2x reduction in the number of parameters.

Abstract (translated)

URL

https://arxiv.org/abs/1901.08824

PDF

https://arxiv.org/pdf/1901.08824.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot