Paper Reading AI Learner

Optimal Boxes: Boosting End-to-End Scene Text Recognition by Adjusting Annotated Bounding Boxes via Reinforcement Learning

2022-07-25 06:58:45
Jingqun Tang, Wenming Qian, Luchuan Song, Xiena Dong, Lan Li, Xiang Bai

Abstract

Text detection and recognition are essential components of a modern OCR system. Most OCR approaches attempt to obtain accurate bounding boxes of text at the detection stage, which is used as the input of the text recognition stage. We observe that when using tight text bounding boxes as input, a text recognizer frequently fails to achieve optimal performance due to the inconsistency between bounding boxes and deep representations of text recognition. In this paper, we propose Box Adjuster, a reinforcement learning-based method for adjusting the shape of each text bounding box to make it more compatible with text recognition models. Additionally, when dealing with cross-domain problems such as synthetic-to-real, the proposed method significantly reduces mismatches in domain distribution between the source and target domains. Experiments demonstrate that the performance of end-to-end text recognition systems can be improved when using the adjusted bounding boxes as the ground truths for training. Specifically, on several benchmark datasets for scene text understanding, the proposed method outperforms state-of-the-art text spotters by an average of 2.0% F-Score on end-to-end text recognition tasks and 4.6% F-Score on domain adaptation tasks.

Abstract (translated)

URL

https://arxiv.org/abs/2207.11934

PDF

https://arxiv.org/pdf/2207.11934.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot