Paper Reading AI Learner

Monocular 3D Object Detection with Depth from Motion

2022-07-26 15:48:46
Tai Wang, Jiangmiao Pang, Dahua Lin

Abstract

Perceiving 3D objects from monocular inputs is crucial for robotic systems, given its economy compared to multi-sensor settings. It is notably difficult as a single image can not provide any clues for predicting absolute depth values. Motivated by binocular methods for 3D object detection, we take advantage of the strong geometry structure provided by camera ego-motion for accurate object depth estimation and detection. We first make a theoretical analysis on this general two-view case and notice two challenges: 1) Cumulative errors from multiple estimations that make the direct prediction intractable; 2) Inherent dilemmas caused by static cameras and matching ambiguity. Accordingly, we establish the stereo correspondence with a geometry-aware cost volume as the alternative for depth estimation and further compensate it with monocular understanding to address the second problem. Our framework, named Depth from Motion (DfM), then uses the established geometry to lift 2D image features to the 3D space and detects 3D objects thereon. We also present a pose-free DfM to make it usable when the camera pose is unavailable. Our framework outperforms state-of-the-art methods by a large margin on the KITTI benchmark. Detailed quantitative and qualitative analyses also validate our theoretical conclusions. The code will be released at this https URL.

Abstract (translated)

URL

https://arxiv.org/abs/2207.12988

PDF

https://arxiv.org/pdf/2207.12988.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot