Paper Reading AI Learner

FCSN: Global Context Aware Segmentation by Learning the Fourier Coefficients of Objects in Medical Images

2022-07-29 04:56:36
Young Seok Jeon, Hongfei Yang, Mengling Feng

Abstract

The encoder-decoder model is a commonly used Deep Neural Network (DNN) model for medical image segmentation. Conventional encoder-decoder models make pixel-wise predictions focusing heavily on local patterns around the pixel. This makes it challenging to give segmentation that preserves the object's shape and topology, which often requires an understanding of the global context of the object. In this work, we propose a Fourier Coefficient Segmentation Network~(FCSN) -- a novel DNN-based model that segments an object by learning the complex Fourier coefficients of the object's masks. The Fourier coefficients are calculated by integrating over the whole contour. Therefore, for our model to make a precise estimation of the coefficients, the model is motivated to incorporate the global context of the object, leading to a more accurate segmentation of the object's shape. This global context awareness also makes our model robust to unseen local perturbations during inference, such as additive noise or motion blur that are prevalent in medical images. When FCSN is compared with other state-of-the-art models (UNet+, DeepLabV3+, UNETR) on 3 medical image segmentation tasks (ISIC\_2018, RIM\_CUP, RIM\_DISC), FCSN attains significantly lower Hausdorff scores of 19.14 (6\%), 17.42 (6\%), and 9.16 (14\%) on the 3 tasks, respectively. Moreover, FCSN is lightweight by discarding the decoder module, which incurs significant computational overhead. FCSN only requires 22.2M parameters, 82M and 10M fewer parameters than UNETR and DeepLabV3+. FCSN attains inference and training speeds of 1.6ms/img and 6.3ms/img, that is 8$\times$ and 3$\times$ faster than UNet and UNETR.

Abstract (translated)

URL

https://arxiv.org/abs/2207.14477

PDF

https://arxiv.org/pdf/2207.14477.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot