Paper Reading AI Learner

Monte-Carlo Robot Path Planning

2022-08-04 14:06:49
T. Dam, G. Chalvatzaki, J. Peters, J. Pajarinen

Abstract

Path planning is a crucial algorithmic approach for designing robot behaviors. Sampling-based approaches, like rapidly exploring random trees (RRTs) or probabilistic roadmaps, are prominent algorithmic solutions for path planning problems. Despite its exponential convergence rate, RRT can only find suboptimal paths. On the other hand, $\textrm{RRT}^*$, a widely-used extension to RRT, guarantees probabilistic completeness for finding optimal paths but suffers in practice from slow convergence in complex environments. Furthermore, real-world robotic environments are often partially observable or with poorly described dynamics, casting the application of $\textrm{RRT}^*$ in complex tasks suboptimal. This paper studies a novel algorithmic formulation of the popular Monte-Carlo tree search (MCTS) algorithm for robot path planning. Notably, we study Monte-Carlo Path Planning (MCPP) by analyzing and proving, on the one part, its exponential convergence rate to the optimal path in fully observable Markov decision processes (MDPs), and on the other part, its probabilistic completeness for finding feasible paths in partially observable MDPs (POMDPs) assuming limited distance observability (proof sketch). Our algorithmic contribution allows us to employ recently proposed variants of MCTS with different exploration strategies for robot path planning. Our experimental evaluations in simulated 2D and 3D environments with a 7 degrees of freedom (DOF) manipulator, as well as in a real-world robot path planning task, demonstrate the superiority of MCPP in POMDP tasks.

Abstract (translated)

URL

https://arxiv.org/abs/2208.02673

PDF

https://arxiv.org/pdf/2208.02673.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot