Paper Reading AI Learner

Deep Feature Learning for Medical Acoustics

2022-08-05 10:39:37
Alessandro Maria Poirè, Federico Simonetta, Stavros Ntalampiras

Abstract

The purpose of this paper is to compare different learnable frontends in medical acoustics tasks. A framework has been implemented to classify human respiratory sounds and heartbeats in two categories, i.e. healthy or affected by pathologies. After obtaining two suitable datasets, we proceeded to classify the sounds using two learnable state-of-art frontends -- LEAF and nnAudio -- plus a non-learnable baseline frontend, i.e. Mel-filterbanks. The computed features are then fed into two different CNN models, namely VGG16 and EfficientNet. The frontends are carefully benchmarked in terms of the number of parameters, computational resources, and effectiveness. This work demonstrates how the integration of learnable frontends in neural audio classification systems may improve performance, especially in the field of medical acoustics. However, the usage of such frameworks makes the needed amount of data even larger. Consequently, they are useful if the amount of data available for training is adequately large to assist the feature learning process.

Abstract (translated)

URL

https://arxiv.org/abs/2208.03084

PDF

https://arxiv.org/pdf/2208.03084.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot