Paper Reading AI Learner

GREASE: Generate Factual and Counterfactual Explanations for GNN-based Recommendations

2022-08-04 09:13:00
Ziheng Chen, Fabrizio Silvestri, Jia Wang, Yongfeng Zhang, Zhenhua Huang, Hongshik Ahn, Gabriele Tolomei

Abstract

Recently, graph neural networks (GNNs) have been widely used to develop successful recommender systems. Although powerful, it is very difficult for a GNN-based recommender system to attach tangible explanations of why a specific item ends up in the list of suggestions for a given user. Indeed, explaining GNN-based recommendations is unique, and existing GNN explanation methods are inappropriate for two reasons. First, traditional GNN explanation methods are designed for node, edge, or graph classification tasks rather than ranking, as in recommender systems. Second, standard machine learning explanations are usually intended to support skilled decision-makers. Instead, recommendations are designed for any end-user, and thus their explanations should be provided in user-understandable ways. In this work, we propose GREASE, a novel method for explaining the suggestions provided by any black-box GNN-based recommender system. Specifically, GREASE first trains a surrogate model on a target user-item pair and its $l$-hop neighborhood. Then, it generates both factual and counterfactual explanations by finding optimal adjacency matrix perturbations to capture the sufficient and necessary conditions for an item to be recommended, respectively. Experimental results conducted on real-world datasets demonstrate that GREASE can generate concise and effective explanations for popular GNN-based recommender models.

Abstract (translated)

URL

https://arxiv.org/abs/2208.04222

PDF

https://arxiv.org/pdf/2208.04222.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot