Paper Reading AI Learner

Understanding Weight Similarity of Neural Networks via Chain Normalization Rule and Hypothesis-Training-Testing

2022-08-08 19:11:03
Guangcong Wang, Guangrun Wang, Wenqi Liang, Jianhuang Lai

Abstract

We present a weight similarity measure method that can quantify the weight similarity of non-convex neural networks. To understand the weight similarity of different trained models, we propose to extract the feature representation from the weights of neural networks. We first normalize the weights of neural networks by introducing a chain normalization rule, which is used for weight representation learning and weight similarity measure. We extend the traditional hypothesis-testing method to a hypothesis-training-testing statistical inference method to validate the hypothesis on the weight similarity of neural networks. With the chain normalization rule and the new statistical inference, we study the weight similarity measure on Multi-Layer Perceptron (MLP), Convolutional Neural Network (CNN), and Recurrent Neural Network (RNN), and find that the weights of an identical neural network optimized with the Stochastic Gradient Descent (SGD) algorithm converge to a similar local solution in a metric space. The weight similarity measure provides more insight into the local solutions of neural networks. Experiments on several datasets consistently validate the hypothesis of weight similarity measure.

Abstract (translated)

URL

https://arxiv.org/abs/2208.04369

PDF

https://arxiv.org/pdf/2208.04369.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot