Paper Reading AI Learner

Human Activity Recognition Using Cascaded Dual Attention CNN and Bi-Directional GRU Framework

2022-08-09 20:34:42
Hayat Ullah, Arslan Munir

Abstract

Vision-based human activity recognition has emerged as one of the essential research areas in video analytics domain. Over the last decade, numerous advanced deep learning algorithms have been introduced to recognize complex human actions from video streams. These deep learning algorithms have shown impressive performance for the human activity recognition task. However, these newly introduced methods either exclusively focus on model performance or the effectiveness of these models in terms of computational efficiency and robustness, resulting in a biased tradeoff in their proposals to deal with challenging human activity recognition problem. To overcome the limitations of contemporary deep learning models for human activity recognition, this paper presents a computationally efficient yet generic spatial-temporal cascaded framework that exploits the deep discriminative spatial and temporal features for human activity recognition. For efficient representation of human actions, we have proposed an efficient dual attentional convolutional neural network (CNN) architecture that leverages a unified channel-spatial attention mechanism to extract human-centric salient features in video frames. The dual channel-spatial attention layers together with the convolutional layers learn to be more attentive in the spatial receptive fields having objects over the number of feature maps. The extracted discriminative salient features are then forwarded to stacked bi-directional gated recurrent unit (Bi-GRU) for long-term temporal modeling and recognition of human actions using both forward and backward pass gradient learning. Extensive experiments are conducted, where the obtained results show that the proposed framework attains an improvement in execution time up to 167 times in terms of frames per second as compared to most of the contemporary action recognition methods.

Abstract (translated)

URL

https://arxiv.org/abs/2208.05034

PDF

https://arxiv.org/pdf/2208.05034.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot