Paper Reading AI Learner

Shape Proportions and Sphericity in n Dimensions

2022-08-12 14:21:27
William Franz Lamberti

Abstract

Shape metrics for objects in high dimensions remain sparse. Those that do exist, such as hyper-volume, remain limited to objects that are better understood such as Platonic solids and $n$-Cubes. Further, understanding objects of ill-defined shapes in higher dimensions is ambiguous at best. Past work does not provide a single number to give a qualitative understanding of an object. For example, the eigenvalues from principal component analysis results in $n$ metrics to describe the shape of an object. Therefore, we need a single number which can discriminate objects with different shape from one another. Previous work has developed shape metrics for specific dimensions such as two or three dimensions. However, there is an opportunity to develop metrics for any desired dimension. To that end, we present two new shape metrics for objects in a given number of dimensions: hyper-Sphericity and hyper-Shape Proportion (SP). We explore the proprieties of these metrics on a number of different shapes including $n$-balls. We then connect these metrics to applications of analyzing the shape of multidimensional data such as the popular Iris dataset.

Abstract (translated)

URL

https://arxiv.org/abs/2208.06292

PDF

https://arxiv.org/pdf/2208.06292.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot