Paper Reading AI Learner

Defense against Backdoor Attacks via Identifying and Purifying Bad Neurons

2022-08-13 01:10:20
Mingyuan Fan, Yang Liu, Cen Chen, Ximeng Liu, Wenzhong Guo

Abstract

The opacity of neural networks leads their vulnerability to backdoor attacks, where hidden attention of infected neurons is triggered to override normal predictions to the attacker-chosen ones. In this paper, we propose a novel backdoor defense method to mark and purify the infected neurons in the backdoored neural networks. Specifically, we first define a new metric, called benign salience. By combining the first-order gradient to retain the connections between neurons, benign salience can identify the infected neurons with higher accuracy than the commonly used metric in backdoor defense. Then, a new Adaptive Regularization (AR) mechanism is proposed to assist in purifying these identified infected neurons via fine-tuning. Due to the ability to adapt to different magnitudes of parameters, AR can provide faster and more stable convergence than the common regularization mechanism in neuron purifying. Extensive experimental results demonstrate that our method can erase the backdoor in neural networks with negligible performance degradation.

Abstract (translated)

URL

https://arxiv.org/abs/2208.06537

PDF

https://arxiv.org/pdf/2208.06537.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot