Paper Reading AI Learner

Entropy Induced Pruning Framework for Convolutional Neural Networks

2022-08-13 14:35:08
Yiheng Lu, Ziyu Guan, Yaming Yang, Maoguo Gong, Wei Zhao, Kaiyuan Feng

Abstract

Structured pruning techniques have achieved great compression performance on convolutional neural networks for image classification task. However, the majority of existing methods are weight-oriented, and their pruning results may be unsatisfactory when the original model is trained poorly. That is, a fully-trained model is required to provide useful weight information. This may be time-consuming, and the pruning results are sensitive to the updating process of model parameters. In this paper, we propose a metric named Average Filter Information Entropy (AFIE) to measure the importance of each filter. It is calculated by three major steps, i.e., low-rank decomposition of the "input-output" matrix of each convolutional layer, normalization of the obtained eigenvalues, and calculation of filter importance based on information entropy. By leveraging the proposed AFIE, the proposed framework is able to yield a stable importance evaluation of each filter no matter whether the original model is trained fully. We implement our AFIE based on AlexNet, VGG-16, and ResNet-50, and test them on MNIST, CIFAR-10, and ImageNet, respectively. The experimental results are encouraging. We surprisingly observe that for our methods, even when the original model is only trained with one epoch, the importance evaluation of each filter keeps identical to the results when the model is fully-trained. This indicates that the proposed pruning strategy can perform effectively at the beginning stage of the training process for the original model.

Abstract (translated)

URL

https://arxiv.org/abs/2208.06660

PDF

https://arxiv.org/pdf/2208.06660.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot