Paper Reading AI Learner

Brand Celebrity Matching Model Based on Natural Language Processing

2022-08-18 15:07:14
Heming Yang, Ke Yang, Erhan Zhang

Abstract

Celebrity Endorsement is one of the most significant strategies in brand communication. Nowadays, more and more companies try to build a vivid characteristic for themselves. Therefore, their brand identity communications should accord with some characteristics as humans and regulations. However, the previous works mostly stop by assumptions, instead of proposing a specific way to perform matching between brands and celebrities. In this paper, we propose a brand celebrity matching model (BCM) based on Natural Language Processing (NLP) techniques. Given a brand and a celebrity, we firstly obtain some descriptive documents of them from the Internet, then summarize these documents, and finally calculate a matching degree between the brand and the celebrity to determine whether they are matched. According to the experimental result, our proposed model outperforms the best baselines with a 0.362 F1 score and 6.3% of accuracy, which indicates the effectiveness and application value of our model in the real-world scene. What's more, to our best knowledge, the proposed BCM model is the first work on using NLP to solve endorsement issues, so it can provide some novel research ideas and methodologies for the following works.

Abstract (translated)

URL

https://arxiv.org/abs/2208.08887

PDF

https://arxiv.org/pdf/2208.08887.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot