Paper Reading AI Learner

Personalizing Intervened Network for Long-tailed Sequential User Behavior Modeling

2022-08-19 02:50:19
Zheqi Lv, Feng Wang, Shengyu Zhang, Kun Kuang, Hongxia Yang, Fei Wu

Abstract

In an era of information explosion, recommendation systems play an important role in people's daily life by facilitating content exploration. It is known that user activeness, i.e., number of behaviors, tends to follow a long-tail distribution, where the majority of users are with low activeness. In practice, we observe that tail users suffer from significantly lower-quality recommendation than the head users after joint training. We further identify that a model trained on tail users separately still achieve inferior results due to limited data. Though long-tail distributions are ubiquitous in recommendation systems, improving the recommendation performance on the tail users still remains challenge in both research and industry. Directly applying related methods on long-tail distribution might be at risk of hurting the experience of head users, which is less affordable since a small portion of head users with high activeness contribute a considerate portion of platform revenue. In this paper, we propose a novel approach that significantly improves the recommendation performance of the tail users while achieving at least comparable performance for the head users over the base model. The essence of this approach is a novel Gradient Aggregation technique that learns common knowledge shared by all users into a backbone model, followed by separate plugin prediction networks for the head users and the tail users personalization. As for common knowledge learning, we leverage the backward adjustment from the causality theory for deconfounding the gradient estimation and thus shielding off the backbone training from the confounder, i.e., user activeness. We conduct extensive experiments on two public recommendation benchmark datasets and a large-scale industrial datasets collected from the Alipay platform. Empirical studies validate the rationality and effectiveness of our approach.

Abstract (translated)

URL

https://arxiv.org/abs/2208.09130

PDF

https://arxiv.org/pdf/2208.09130.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot