Paper Reading AI Learner

Design Automation for Fast, Lightweight, and Effective Deep Learning Models: A Survey

2022-08-22 12:12:43
Dalin Zhang, Kaixuan Chen, Yan Zhao, Bin Yang, Lina Yao, Christian S. Jensen

Abstract

Deep learning technologies have demonstrated remarkable effectiveness in a wide range of tasks, and deep learning holds the potential to advance a multitude of applications, including in edge computing, where deep models are deployed on edge devices to enable instant data processing and response. A key challenge is that while the application of deep models often incurs substantial memory and computational costs, edge devices typically offer only very limited storage and computational capabilities that may vary substantially across devices. These characteristics make it difficult to build deep learning solutions that unleash the potential of edge devices while complying with their constraints. A promising approach to addressing this challenge is to automate the design of effective deep learning models that are lightweight, require only a little storage, and incur only low computational overheads. This survey offers comprehensive coverage of studies of design automation techniques for deep learning models targeting edge computing. It offers an overview and comparison of key metrics that are used commonly to quantify the proficiency of models in terms of effectiveness, lightness, and computational costs. The survey then proceeds to cover three categories of the state-of-the-art of deep model design automation techniques: automated neural architecture search, automated model compression, and joint automated design and compression. Finally, the survey covers open issues and directions for future research.

Abstract (translated)

URL

https://arxiv.org/abs/2208.10498

PDF

https://arxiv.org/pdf/2208.10498.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot