Paper Reading AI Learner

The Value of AI Guidance in Human Examination of Synthetically-Generated Faces

2022-08-22 18:45:53
Aidan Boyd, Patrick Tinsley, Kevin Bowyer, Adam Czajka

Abstract

Face image synthesis has progressed beyond the point at which humans can effectively distinguish authentic faces from synthetically generated ones. Recently developed synthetic face image detectors boast "better-than-human" discriminative ability, especially those guided by human perceptual intelligence during the model's training process. In this paper, we investigate whether these human-guided synthetic face detectors can assist non-expert human operators in the task of synthetic image detection when compared to models trained without human-guidance. We conducted a large-scale experiment with more than 1,560 subjects classifying whether an image shows an authentic or synthetically-generated face, and annotate regions that supported their decisions. In total, 56,015 annotations across 3,780 unique face images were collected. All subjects first examined samples without any AI support, followed by samples given (a) the AI's decision ("synthetic" or "authentic"), (b) class activation maps illustrating where the model deems salient for its decision, or (c) both the AI's decision and AI's saliency map. Synthetic faces were generated with six modern Generative Adversarial Networks. Interesting observations from this experiment include: (1) models trained with human-guidance offer better support to human examination of face images when compared to models trained traditionally using cross-entropy loss, (2) binary decisions presented to humans offers better support than saliency maps, (3) understanding the AI's accuracy helps humans to increase trust in a given model and thus increase their overall accuracy. This work demonstrates that although humans supported by machines achieve better-than-random accuracy of synthetic face detection, the ways of supplying humans with AI support and of building trust are key factors determining high effectiveness of the human-AI tandem.

Abstract (translated)

URL

https://arxiv.org/abs/2208.10544

PDF

https://arxiv.org/pdf/2208.10544.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot