Paper Reading AI Learner

SurvSHAP: Time-dependent explanations of machine learning survival models

2022-08-23 17:01:14
Mateusz Krzyziński, Mikołaj Spytek, Hubert Baniecki, Przemysław Biecek

Abstract

Machine and deep learning survival models demonstrate similar or even improved time-to-event prediction capabilities compared to classical statistical learning methods yet are too complex to be interpreted by humans. Several model-agnostic explanations are available to overcome this issue; however, none directly explain the survival function prediction. In this paper, we introduce SurvSHAP(t), the first time-dependent explanation that allows for interpreting survival black-box models. It is based on SHapley Additive exPlanations with solid theoretical foundations and a broad adoption among machine learning practitioners. The proposed methods aim to enhance precision diagnostics and support domain experts in making decisions. Experiments on synthetic and medical data confirm that SurvSHAP(t) can detect variables with a time-dependent effect, and its aggregation is a better determinant of the importance of variables for a prediction than SurvLIME. SurvSHAP(t) is model-agnostic and can be applied to all models with functional output. We provide an accessible implementation of time-dependent explanations in Python at this http URL .

Abstract (translated)

URL

https://arxiv.org/abs/2208.11080

PDF

https://arxiv.org/pdf/2208.11080.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot