Paper Reading AI Learner

Motion Robust High-Speed Light-weighted Object Detection with Event Camera

2022-08-24 15:15:24
Bingde Liu

Abstract

The event camera produces a large dynamic range event stream with a very high temporal resolution discarding redundant visual information, thus bringing new possibilities for object detection tasks. However, the existing methods of applying the event camera to object detection tasks using deep learning methods still have many problems. First, existing methods cannot take into account objects with different velocities relative to the motion of the event camera due to the global synchronized time window and temporal resolution. Second, most of the existing methods rely on large parameter neural networks, which implies a large computational burden and low inference speed, thus contrary to the high temporal resolution of the event stream. In our work, we design a high-speed lightweight detector called Agile Event Detector (AED) with a simple but effective data augmentation method. Also, we propose an event stream representation tensor called Temporal Active Focus (TAF), which takes full advantage of the asynchronous generation of event stream data and is robust to the motion of moving objects. It can also be constructed without much time-consuming. We further propose a module called the Bifurcated Folding Module (BFM) to extract the rich temporal information in the TAF tensor at the input layer of the AED detector. We conduct our experiments on two typical real-scene event camera object detection datasets: the complete Prophesee GEN1 Automotive Detection Dataset and the Prophesee 1 MEGAPIXEL Automotive Detection Dataset with partial annotation. Experiments show that our method is competitive in terms of accuracy, speed, and the number of parameters simultaneously. Also by classifying the objects into multiple motion levels based on the optical flow density metric, we illustrated the robustness of our method for objects with different velocities relative to the camera.

Abstract (translated)

URL

https://arxiv.org/abs/2208.11602

PDF

https://arxiv.org/pdf/2208.11602.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot