Paper Reading AI Learner

Kencorpus: A Kenyan Language Corpus of Swahili, Dholuo and Luhya for Natural Language Processing Tasks

2022-08-25 13:27:14
Barack Wanjawa, Lilian Wanzare, Florence Indede, Owen McOnyango, Edward Ombui, Lawrence Muchemi

Abstract

Indigenous African languages are categorized as under-served in Artificial Intelligence and suffer poor digital inclusivity and information access. The challenge has been how to use machine learning and deep learning models without the requisite data. Kencorpus is a Kenyan Language corpus that intends to bridge the gap on how to collect, and store text and speech data that is good enough to enable data-driven solutions in applications such as machine translation, question answering and transcription in multilingual communities. Kencorpus is a corpus (text and speech) for three languages predominantly spoken in Kenya: Swahili, Dholuo and Luhya (dialects Lumarachi, Lulogooli and Lubukusu). This corpus intends to fill the gap of developing a dataset that can be used for Natural Language Processing and Machine Learning tasks for low-resource languages. Each of these languages contributed text and speech data for the language corpus. Data collection was done by researchers from communities, schools and collaborating partners (media, publishers). Kencorpus has a collection of 5,594 items, being 4,442 texts (5.6million words) and 1,152 speech files (177hrs). Based on this data, other datasets were also developed e.g POS tagging sets for Dholuo and Luhya (50,000 and 93,000 words tagged respectively), Question-Answer pairs from Swahili texts (7,537 QA pairs) and Translation of texts into Swahili (12,400 sentences). The datasets are useful for machine learning tasks such as text processing, annotation and translation. The project also undertook proof of concept systems in speech to text and machine learning for QA task, with initial results confirming the usability of the Kencorpus to the machine learning community. Kencorpus is the first such corpus of its kind for these low resource languages and forms a basis of learning and sharing experiences for similar works.

Abstract (translated)

URL

https://arxiv.org/abs/2208.12081

PDF

https://arxiv.org/pdf/2208.12081.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot