Paper Reading AI Learner

Bottom-Up 2D Pose Estimation via Dual Anatomical Centers for Small-Scale Persons

2022-08-25 10:09:10
Yu Cheng, Yihao Ai, Bo Wang, Xinchao Wang, Robby T. Tan

Abstract

In multi-person 2D pose estimation, the bottom-up methods simultaneously predict poses for all persons, and unlike the top-down methods, do not rely on human detection. However, the SOTA bottom-up methods' accuracy is still inferior compared to the existing top-down methods. This is due to the predicted human poses being regressed based on the inconsistent human bounding box center and the lack of human-scale normalization, leading to the predicted human poses being inaccurate and small-scale persons being missed. To push the envelope of the bottom-up pose estimation, we firstly propose multi-scale training to enhance the network to handle scale variation with single-scale testing, particularly for small-scale persons. Secondly, we introduce dual anatomical centers (i.e., head and body), where we can predict the human poses more accurately and reliably, especially for small-scale persons. Moreover, existing bottom-up methods use multi-scale testing to boost the accuracy of pose estimation at the price of multiple additional forward passes, which weakens the efficiency of bottom-up methods, the core strength compared to top-down methods. By contrast, our multi-scale training enables the model to predict high-quality poses in a single forward pass (i.e., single-scale testing). Our method achieves 38.4\% improvement on bounding box precision and 39.1\% improvement on bounding box recall over the state of the art (SOTA) on the challenging small-scale persons subset of COCO. For the human pose AP evaluation, we achieve a new SOTA (71.0 AP) on the COCO test-dev set with the single-scale testing. We also achieve the top performance (40.3 AP) on OCHuman dataset in cross-dataset evaluation.

Abstract (translated)

URL

https://arxiv.org/abs/2208.11975

PDF

https://arxiv.org/pdf/2208.11975.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot