Paper Reading AI Learner

Fast Fourier Convolution Based Remote Sensor Image Object Detection for Earth Observation

2022-09-01 15:50:58
Gu Lingyun, Eugene Popov, Dong Ge

Abstract

Remote sensor image object detection is an important technology for Earth observation, and is used in various tasks such as forest fire monitoring and ocean monitoring. Image object detection technology, despite the significant developments, is struggling to handle remote sensor images and small-scale objects, due to the limited pixels of small objects. Numerous existing studies have demonstrated that an effective way to promote small object detection is to introduce the spatial context. Meanwhile, recent researches for image classification have shown that spectral convolution operations can perceive long-term spatial dependence more efficiently in the frequency domain than spatial domain. Inspired by this observation, we propose a Frequency-aware Feature Pyramid Framework (FFPF) for remote sensing object detection, which consists of a novel Frequency-aware ResNet (F-ResNet) and a Bilateral Spectral-aware Feature Pyramid Network (BS-FPN). Specifically, the F-ResNet is proposed to perceive the spectral context information by plugging the frequency domain convolution into each stage of the backbone, extracting richer features of small objects. To the best of our knowledge, this is the first work to introduce frequency-domain convolution into remote sensing object detection task. In addition, the BSFPN is designed to use a bilateral sampling strategy and skipping connection to better model the association of object features at different scales, towards unleashing the potential of the spectral context information from F-ResNet. Extensive experiments are conducted for object detection in the optical remote sensing image dataset (DIOR and DOTA). The experimental results demonstrate the excellent performance of our method. It achieves an average accuracy (mAP) without any tricks.

Abstract (translated)

URL

https://arxiv.org/abs/2209.00551

PDF

https://arxiv.org/pdf/2209.00551.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot