Paper Reading AI Learner

Exploring traditional machine learning for identification of pathological auscultations

2022-09-01 18:03:21
Haroldas Razvadauskas, Evaldas Vaiciukynas, Kazimieras Buskus, Lukas Drukteinis, Lukas Arlauskas, Saulius Sadauskas, Albinas Naudziunas

Abstract

Today, data collection has improved in various areas, and the medical domain is no exception. Auscultation, as an important diagnostic technique for physicians, due to the progress and availability of digital stethoscopes, lends itself well to applications of machine learning. Due to the large number of auscultations performed, the availability of data opens up an opportunity for more effective analysis of sounds where prognostic accuracy even among experts remains low. In this study, digital 6-channel auscultations of 45 patients were used in various machine learning scenarios, with the aim of distinguishing between normal and anomalous pulmonary sounds. Audio features (such as fundamental frequencies F0-4, loudness, HNR, DFA, as well as descriptive statistics of log energy, RMS and MFCC) were extracted using the Python library Surfboard. Windowing and feature aggregation and concatenation strategies were used to prepare data for tree-based ensemble models in unsupervised (fair-cut forest) and supervised (random forest) machine learning settings. The evaluation was carried out using 9-fold stratified cross-validation repeated 30 times. Decision fusion by averaging outputs for a subject was tested and found to be useful. Supervised models showed a consistent advantage over unsupervised ones, achieving mean AUC ROC of 0.691 (accuracy 71.11%, Kappa 0.416, F1-score 0.771) in side-based detection and mean AUC ROC of 0.721 (accuracy 68.89%, Kappa 0.371, F1-score 0.650) in patient-based detection.

Abstract (translated)

URL

https://arxiv.org/abs/2209.00672

PDF

https://arxiv.org/pdf/2209.00672.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot