Paper Reading AI Learner

Measuring the Interpretability of Unsupervised Representations via Quantized Reverse Probing

2022-09-07 16:18:50
Iro Laina, Yuki M. Asano, Andrea Vedaldi

Abstract

Self-supervised visual representation learning has recently attracted significant research interest. While a common way to evaluate self-supervised representations is through transfer to various downstream tasks, we instead investigate the problem of measuring their interpretability, i.e. understanding the semantics encoded in raw representations. We formulate the latter as estimating the mutual information between the representation and a space of manually labelled concepts. To quantify this we introduce a decoding bottleneck: information must be captured by simple predictors, mapping concepts to clusters in representation space. This approach, which we call reverse linear probing, provides a single number sensitive to the semanticity of the representation. This measure is also able to detect when the representation contains combinations of concepts (e.g., "red apple") instead of just individual attributes ("red" and "apple" independently). Finally, we propose to use supervised classifiers to automatically label large datasets in order to enrich the space of concepts used for probing. We use our method to evaluate a large number of self-supervised representations, ranking them by interpretability, highlight the differences that emerge compared to the standard evaluation with linear probes and discuss several qualitative insights. Code at: {\scriptsize{\url{this https URL}}}.

Abstract (translated)

URL

https://arxiv.org/abs/2209.03268

PDF

https://arxiv.org/pdf/2209.03268.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot