Paper Reading AI Learner

Joint Learning of Deep Texture and High-Frequency Features for Computer-Generated Image Detection

2022-09-07 17:30:40
Qiang Xu, Shan Jia, Xinghao Jiang, Tanfeng Sun, Zhe Wang, Hong Yan

Abstract

Distinguishing between computer-generated (CG) and natural photographic (PG) images is of great importance to verify the authenticity and originality of digital images. However, the recent cutting-edge generation methods enable high qualities of synthesis in CG images, which makes this challenging task even trickier. To address this issue, a joint learning strategy with deep texture and high-frequency features for CG image detection is proposed. We first formulate and deeply analyze the different acquisition processes of CG and PG images. Based on the finding that multiple different modules in image acquisition will lead to different sensitivity inconsistencies to the convolutional neural network (CNN)-based rendering in images, we propose a deep texture rendering module for texture difference enhancement and discriminative texture representation. Specifically, the semantic segmentation map is generated to guide the affine transformation operation, which is used to recover the texture in different regions of the input image. Then, the combination of the original image and the high-frequency components of the original and rendered images are fed into a multi-branch neural network equipped with attention mechanisms, which refines intermediate features and facilitates trace exploration in spatial and channel dimensions respectively. Extensive experiments on two public datasets and a newly constructed dataset with more realistic and diverse images show that the proposed approach outperforms existing methods in the field by a clear margin. Besides, results also demonstrate the detection robustness and generalization ability of the proposed approach to postprocessing operations and generative adversarial network (GAN) generated images.

Abstract (translated)

URL

https://arxiv.org/abs/2209.03322

PDF

https://arxiv.org/pdf/2209.03322.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot