Paper Reading AI Learner

MetaNetwork: A Task-agnostic Network Parameters Generation Framework for Improving Device Model Generalization

2022-09-12 13:26:26
Zheqi Lv, Feng Wang, Kun Kuang, Yongwei Wang, Zhengyu Chen, Tao Shen, Hongxia Yang, Fei Wu

Abstract

Deploying machine learning models on mobile devices has gained increasing attention. To tackle the model generalization problem with the limitations of hardware resources on the device, the device model needs to be lightweight by techniques such as model compression from the cloud model. However, the major obstacle to improve the device model generalization is the distribution shift between the data of cloud and device models, since the data distribution on device model often changes over time (e.g., users might have different preferences in recommendation system). Although real-time fine-tuning and distillation method take this situation into account, these methods require on-device training, which are practically infeasible due to the low computational power and a lack of real-time labeled samples on the device. In this paper, we propose a novel task-agnostic framework, named MetaNetwork, for generating adaptive device model parameters from cloud without on-device training. Specifically, our MetaNetwork is deployed on cloud and consists of MetaGenerator and MetaStabilizer modules. The MetaGenerator is designed to learn a mapping function from samples to model parameters, and it can generate and deliver the adaptive parameters to the device based on samples uploaded from the device to the cloud. The MetaStabilizer aims to reduce the oscillation of the MetaGenerator, accelerate the convergence and improve the model performance during both training and inference. We evaluate our method on two tasks with three datasets. Extensive experiments show that MetaNetwork can achieve competitive performances in different modalities.

Abstract (translated)

URL

https://arxiv.org/abs/2209.05227

PDF

https://arxiv.org/pdf/2209.05227.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot