Paper Reading AI Learner

Leveraging Large Language Models for Robot 3D Scene Understanding

2022-09-12 21:36:58
William Chen, Siyi Hu, Rajat Talak, Luca Carlone

Abstract

Semantic 3D scene understanding is a problem of critical importance in robotics. While significant advances have been made in spatial perception, robots are still far from having the common-sense knowledge about household objects and locations of an average human. We thus investigate the use of large language models to impart common sense for scene understanding. Specifically, we introduce three paradigms for leveraging language for classifying rooms in indoor environments based on their contained objects: (i) a zero-shot approach, (ii) a feed-forward classifier approach, and (iii) a contrastive classifier approach. These methods operate on 3D scene graphs produced by modern spatial perception systems. We then analyze each approach, demonstrating notable zero-shot generalization and transfer capabilities stemming from their use of language. Finally, we show these approaches also apply to inferring building labels from contained rooms and demonstrate our zero-shot approach on a real environment. All code can be found at this https URL.

Abstract (translated)

URL

https://arxiv.org/abs/2209.05629

PDF

https://arxiv.org/pdf/2209.05629.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot