Paper Reading AI Learner

Gromov-Wasserstein Autoencoders

2022-09-15 02:34:39
Nao Nakagawa, Ren Togo, Takahiro Ogawa, Miki Haseyama

Abstract

Learning concise data representations without supervisory signals is a fundamental challenge in machine learning. A prominent approach to this goal is likelihood-based models such as variational autoencoders (VAE) to learn latent representations based on a meta-prior, which is a general premise assumed beneficial for downstream tasks (e.g., disentanglement). However, such approaches often deviate from the original likelihood architecture to apply the introduced meta-prior, causing undesirable changes in their training. In this paper, we propose a novel representation learning method, Gromov-Wasserstein Autoencoders (GWAE), which directly matches the latent and data distributions. Instead of a likelihood-based objective, GWAE models have a trainable prior optimized by minimizing the Gromov-Wasserstein (GW) metric. The GW metric measures the distance structure-oriented discrepancy between distributions supported on incomparable spaces, e.g., with different dimensionalities. By restricting the family of the trainable prior, we can introduce meta-priors to control latent representations for downstream tasks. The empirical comparison with the existing VAE-based methods shows that GWAE models can learn representations based on meta-priors by changing the prior family without further modifying the GW objective.

Abstract (translated)

URL

https://arxiv.org/abs/2209.07007

PDF

https://arxiv.org/pdf/2209.07007.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot