Paper Reading AI Learner

PTab: Using the Pre-trained Language Model for Modeling Tabular Data

2022-09-15 08:58:42
Guang Liu, Jie Yang, Ledell Wu

Abstract

Tabular data is the foundation of the information age and has been extensively studied. Recent studies show that neural-based models are effective in learning contextual representation for tabular data. The learning of an effective contextual representation requires meaningful features and a large amount of data. However, current methods often fail to properly learn a contextual representation from the features without semantic information. In addition, it's intractable to enlarge the training set through mixed tabular datasets due to the difference between datasets. To address these problems, we propose a novel framework PTab, using the Pre-trained language model to model Tabular data. PTab learns a contextual representation of tabular data through a three-stage processing: Modality Transformation(MT), Masked-Language Fine-tuning(MF), and Classification Fine-tuning(CF). We initialize our model with a pre-trained Model (PTM) which contains semantic information learned from the large-scale language data. Consequently, contextual representation can be learned effectively during the fine-tuning stages. In addition, we can naturally mix the textualized tabular data to enlarge the training set to further improve representation learning. We evaluate PTab on eight popular tabular classification datasets. Experimental results show that our method has achieved a better average AUC score in supervised settings compared to the state-of-the-art baselines(e.g. XGBoost), and outperforms counterpart methods under semi-supervised settings. We present visualization results that show PTab has well instance-based interpretability.

Abstract (translated)

URL

https://arxiv.org/abs/2209.08060

PDF

https://arxiv.org/pdf/2209.08060.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot