Paper Reading AI Learner

Unsupervised Early Exit in DNNs with Multiple Exits

2022-09-20 05:35:54
Hari Narayan N U, Manjesh K. Hanawal, Avinash Bhardwaj

Abstract

Deep Neural Networks (DNNs) are generally designed as sequentially cascaded differentiable blocks/layers with a prediction module connected only to its last layer. DNNs can be attached with prediction modules at multiple points along the backbone where inference can stop at an intermediary stage without passing through all the modules. The last exit point may offer a better prediction error but also involves more computational resources and latency. An exit point that is `optimal' in terms of both prediction error and cost is desirable. The optimal exit point may depend on the latent distribution of the tasks and may change from one task type to another. During neural inference, the ground truth of instances may not be available and error rates at each exit point cannot be estimated. Hence one is faced with the problem of selecting the optimal exit in an unsupervised setting. Prior works tackled this problem in an offline supervised setting assuming that enough labeled data is available to estimate the error rate at each exit point and tune the parameters for better accuracy. However, pre-trained DNNs are often deployed in new domains for which a large amount of ground truth may not be available. We model the problem of exit selection as an unsupervised online learning problem and use bandit theory to identify the optimal exit point. Specifically, we focus on Elastic BERT, a pre-trained multi-exit DNN to demonstrate that it `nearly' satisfies the Strong Dominance (SD) property making it possible to learn the optimal exit in an online setup without knowing the ground truth labels. We develop upper confidence bound (UCB) based algorithm named UEE-UCB that provably achieves sub-linear regret under the SD property. Thus our method provides a means to adaptively learn domain-specific optimal exit points in multi-exit DNNs. We empirically validate our algorithm on IMDb and Yelp datasets.

Abstract (translated)

URL

https://arxiv.org/abs/2209.09480

PDF

https://arxiv.org/pdf/2209.09480.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot