Paper Reading AI Learner

FT-HID: A Large Scale RGB-D Dataset for First and Third Person Human Interaction Analysis

2022-09-21 07:24:15
Zihui Guo, Yonghong Hou, Pichao Wang, Zhimin Gao, Mingliang Xu, Wanqing Li

Abstract

Analysis of human interaction is one important research topic of human motion analysis. It has been studied either using first person vision (FPV) or third person vision (TPV). However, the joint learning of both types of vision has so far attracted little attention. One of the reasons is the lack of suitable datasets that cover both FPV and TPV. In addition, existing benchmark datasets of either FPV or TPV have several limitations, including the limited number of samples, participant subjects, interaction categories, and modalities. In this work, we contribute a large-scale human interaction dataset, namely, FT-HID dataset. FT-HID contains pair-aligned samples of first person and third person visions. The dataset was collected from 109 distinct subjects and has more than 90K samples for three modalities. The dataset has been validated by using several existing action recognition methods. In addition, we introduce a novel multi-view interaction mechanism for skeleton sequences, and a joint learning multi-stream framework for first person and third person visions. Both methods yield promising results on the FT-HID dataset. It is expected that the introduction of this vision-aligned large-scale dataset will promote the development of both FPV and TPV, and their joint learning techniques for human action analysis. The dataset and code are available at \href{this https URL}{here}.

Abstract (translated)

URL

https://arxiv.org/abs/2209.10155

PDF

https://arxiv.org/pdf/2209.10155.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot