Paper Reading AI Learner

PicT: A Slim Weakly Supervised Vision Transformer for Pavement Distress Classification

2022-09-21 02:33:49
Wenhao Tang, Sheng Huang, Xiaoxian Zhang, Luwen Huangfu

Abstract

Automatic pavement distress classification facilitates improving the efficiency of pavement maintenance and reducing the cost of labor and resources. A recently influential branch of this task divides the pavement image into patches and addresses these issues from the perspective of multi-instance learning. However, these methods neglect the correlation between patches and suffer from a low efficiency in the model optimization and inference. Meanwhile, Swin Transformer is able to address both of these issues with its unique strengths. Built upon Swin Transformer, we present a vision Transformer named \textbf{P}avement \textbf{I}mage \textbf{C}lassification \textbf{T}ransformer (\textbf{PicT}) for pavement distress classification. In order to better exploit the discriminative information of pavement images at the patch level, the \textit{Patch Labeling Teacher} is proposed to leverage a teacher model to dynamically generate pseudo labels of patches from image labels during each iteration, and guides the model to learn the discriminative features of patches. The broad classification head of Swin Transformer may dilute the discriminative features of distressed patches in the feature aggregation step due to the small distressed area ratio of the pavement image. To overcome this drawback, we present a \textit{Patch Refiner} to cluster patches into different groups and only select the highest distress-risk group to yield a slim head for the final image classification. We evaluate our method on CQU-BPDD. Extensive results show that \textbf{PicT} outperforms the second-best performed model by a large margin of $+2.4\%$ in P@R on detection task, $+3.9\%$ in $F1$ on recognition task, and 1.8x throughput, while enjoying 7x faster training speed using the same computing resources. Our codes and models have been released on \href{this https URL}{this https URL}.

Abstract (translated)

URL

https://arxiv.org/abs/2209.10074

PDF

https://arxiv.org/pdf/2209.10074.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot