Paper Reading AI Learner

Implementing and Experimenting with Diffusion Models for Text-to-Image Generation

2022-09-22 12:03:33
Robin Zbinden

Abstract

Taking advantage of the many recent advances in deep learning, text-to-image generative models currently have the merit of attracting the general public attention. Two of these models, DALL-E 2 and Imagen, have demonstrated that highly photorealistic images could be generated from a simple textual description of an image. Based on a novel approach for image generation called diffusion models, text-to-image models enable the production of many different types of high resolution images, where human imagination is the only limit. However, these models require exceptionally large amounts of computational resources to train, as well as handling huge datasets collected from the internet. In addition, neither the codebase nor the models have been released. It consequently prevents the AI community from experimenting with these cutting-edge models, making the reproduction of their results complicated, if not impossible. In this thesis, we aim to contribute by firstly reviewing the different approaches and techniques used by these models, and then by proposing our own implementation of a text-to-image model. Highly based on DALL-E 2, we introduce several slight modifications to tackle the high computational cost induced. We thus have the opportunity to experiment in order to understand what these models are capable of, especially in a low resource regime. In particular, we provide additional and analyses deeper than the ones performed by the authors of DALL-E 2, including ablation studies. Besides, diffusion models use so-called guidance methods to help the generating process. We introduce a new guidance method which can be used in conjunction with other guidance methods to improve image quality. Finally, the images generated by our model are of reasonably good quality, without having to sustain the significant training costs of state-of-the-art text-to-image models.

Abstract (translated)

URL

https://arxiv.org/abs/2209.10948

PDF

https://arxiv.org/pdf/2209.10948.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot