Paper Reading AI Learner

COVID-19 Detection and Analysis From Lung CT Images using Novel Channel Boosted CNNs

2022-09-22 12:32:16
Saddam Hussain Khan

Abstract

In December 2019, the global pandemic COVID-19 in Wuhan, China, affected human life and the worldwide economy. Therefore, an efficient diagnostic system is required to control its spread. However, the automatic diagnostic system poses challenges with a limited amount of labeled data, minor contrast variation, and high structural similarity between infection and background. In this regard, a new two-phase deep convolutional neural network (CNN) based diagnostic system is proposed to detect minute irregularities and analyze COVID-19 infection. In the first phase, a novel SB-STM-BRNet CNN is proposed, incorporating a new channel Squeezed and Boosted (SB) and dilated convolutional-based Split-Transform-Merge (STM) block to detect COVID-19 infected CT lungs images. The new STM blocks performed multi-path region-smoothing and boundary operations, which helped to learn minor contrast variation and global COVID-19 specific patterns. Furthermore, the diverse boosted channels are achieved using the SB and Transfer Learning concepts in STM blocks to learn texture variation between COVID-19-specific and healthy images. In the second phase, COVID-19 infected images are provided to the novel COVID-CB-RESeg segmentation CNN to identify and analyze COVID-19 infectious regions. The proposed COVID-CB-RESeg methodically employed region-homogeneity, heterogeneity operations, and channel boosting using auxiliary channels in each encoder and decoder block to simultaneously learn the low illumination and boundaries of the COVID-19 infected region. The proposed diagnostic system yields good performance in terms of accuracy: 98.21 %, F-score: 98.24%, Dice Similarity: 96.40 %, and IOU: 98.85 % for the COVID-19 infected region. The proposed diagnostic system would reduce the burden and strengthen the radiologist's decision for a fast and accurate COVID-19 diagnosis.

Abstract (translated)

URL

https://arxiv.org/abs/2209.10963

PDF

https://arxiv.org/pdf/2209.10963.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot